일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
- python3
- Turbulent
- Finite Difference Method
- 우선순위큐
- programmers
- Python
- Heat Equation
- Navier-Stokes
- Blasius
- 힙
- FTCS
- 프로젝트오일러
- 통계학
- 디스크 컨트롤러
- 유체역학
- Fluid Dynamics
- heap
- 회귀
- Statistics
- 파이썬
- Boundary Layers
- Laminar
- 예제
- Compressible Flow
- Fluids
- 프로그래머스
- regression
- 이중우선순위큐
- projecteuler
- Crank-Nicolson
- Today
- Total
Sudal's Garage
Project Euler 18 본문
Question:
By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)
문제:
다음과 같이 삼각형 모양으로 숫자를 배열했습니다.
3
7 4
2 4 6
8 5 9 3삼각형의 꼭대기부터 아래쪽으로 인접한 숫자를 찾아 내려가면서 합을 구하면, 위의 그림처럼 3 + 7 + 4 + 9 = 23 이 가장 큰 합을 갖는 경로가 됩니다.
다음 삼각형에서 합이 최대가 되는 경로를 찾아서 그 합을 구하세요.
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23참고: 여기서는 경로가 16384개밖에 안되기 때문에, 모든 경로의 합을 일일이 계산해서 답을 구하는 것이 가능합니다.
하지만 67번 문제에는 100층짜리 삼각형 배열이 나옵니다. 그런 경우에는 좀 더 현명한 풀이 방법을 찾아야겠지요.
Solution:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | a = '''75 95 64 17 47 82 18 35 87 10 20 04 82 47 65 19 01 23 75 03 34 88 02 77 73 07 63 67 99 65 04 28 06 16 70 92 41 41 26 56 83 40 80 70 33 41 48 72 33 47 32 37 16 94 29 53 71 44 65 25 43 91 52 97 51 14 70 11 33 28 77 73 17 78 39 68 17 57 91 71 52 38 17 14 91 43 58 50 27 29 48 63 66 04 68 89 53 67 30 73 16 69 87 40 31 04 62 98 27 23 09 70 98 73 93 38 53 60 04 23'''.split('\n') b = [a[x].split(' ') for x in range(len(a))] i = 0 result = 0 for x in range(len(b)): if len(b[x]) == 1: result += int(b[x][i]) else: if int(b[x][i]) >= int(b[x][i + 1]): result += int(b[x][i]) else: result += int(b[x][i + 1]) i += 1 print(result) | cs |
b list에 삼각형의 행을 저장해줬다.
그리고 아래로 내려가면서, 두개중에 더 큰 숫자를 더하는 방식
'Programming > Project Euler - python' 카테고리의 다른 글
Project Euler 20 (0) | 2019.03.08 |
---|---|
Project Euler 19 (0) | 2019.03.07 |
Project Euler 17 (0) | 2019.03.05 |
Project Euler 16 (0) | 2019.03.04 |
Project Euler 15 (0) | 2019.03.03 |