일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- Navier-Stokes
- regression
- Laminar
- 힙
- heap
- Python
- python3
- Boundary Layers
- Fluid Dynamics
- projecteuler
- 파이썬
- 디스크 컨트롤러
- programmers
- Fluids
- Statistics
- 예제
- Finite Difference Method
- Heat Equation
- 프로젝트오일러
- Crank-Nicolson
- Turbulent
- 통계학
- 유체역학
- Compressible Flow
- FTCS
- Blasius
- 이중우선순위큐
- 우선순위큐
- 회귀
- 프로그래머스
- Today
- Total
Sudal's Garage
Question: 145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145.Find the sum of all numbers which are equal to the sum of the factorial of their digits.Note: as 1! = 1 and 2! = 2 are not sums they are not included. 문제: 145는 '희한한 성질'이 있는 숫자인데, 1! + 4! + 5! = 1 + 24 + 120 = 145 와 같이 각 자리 숫자의 팩토리얼을 더하면 자기 자신이 된다.이러한 '희한한 성질'이 있는 모든 숫자의 합을 구하여라.주의: 1! = 1 이고 2! = 2 인데 이것들은 합이 아니므로 포함되지 않는다. ..
Question: The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplify it may incorrectly believe that 49/98 = 4/8, which is correct, is obtained by cancelling the 9s.We shall consider fractions like, 30/50 = 3/5, to be trivial examples.There are exactly four non-trivial examples of this type of fraction, less than one in value, and containing two digits ..
Question: We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once; for example, the 5-digit number, 15234, is 1 through 5 pandigital.The product 7254 is unusual, as the identity, 39 × 186 = 7254, containing multiplicand, multiplier, and product is 1 through 9 pandigital.Find the sum of all products whose multiplicand/multiplier/product identity can..